Percent Yield

The amount of a product formed when the limiting reactant is completely consumed is called the **theoretical yield** of that product. This is the *maximum amount* of product that could be produced from the quantities of reactants used.

In reality, the amount of product predicted by the theoretical yield is seldom obtained. The **actual yield** is the amount of product actually produced when the chemical reaction is carried out in an experiment.

The actual yield is often given as a percentage of the theoretical yield. This is called the **percent** yield:

 $percent \ yield = \frac{actual \ yield}{theoretical \ yield} \times 100\%$

Example 1

When potassium chromate (K_2CrO_4) is added to a solution containing 0.5 g silver nitrate $(AgNO_3)$, solid silver chromate (Ag_2CrO_4) is formed.

a) Determine the theoretical yield of the silver chromate precipitate.

b) If 0.455 g of silver chromate is obtained, calculate the percent yield.

Percent Yield Worksheet

1. Given the following equation:

$$\underline{\qquad} K_2 PtCl_4 + \underline{\qquad} NH_3 \rightarrow \underline{\qquad} Pt(NH_3)_2 Cl_2 + \underline{\qquad} KCl$$

- a) Balance the equation.
- b) Determine the theoretical yield of KCl if you start with 34.5 g NH_3 .
- c) If 76.4 g $Pt(NH_3)_2 Cl_2$ are produced when you actually carry out this experiment, what is the percent yield?
- 2. Given the following equation:

$$H_3PO_4 + 3KOH \rightarrow K_3PO_4 + 3H_2O$$

- a) If 49.0 g H_3PO_4 is reacted with excess KOH, determine the theoretical yield of K_3PO_4 .
- b) If 49.0 $g K_3 PO_4$ are produced when you actually carry out this experiment, what is the percent yield?
- 3. Given the following equation:

$$Al_2(SO_3)_3 + 6NaOH \rightarrow 3Na_2SO_3 + 2Al(OH)_3$$

If you start with 389.4 $g Al_2(SO_3)_3$ and produce 212.4 $g Na_2SO_3$, what is the percent yield for this reaction?

4. Given the following equation:

$$Al(OH)_3(s) + 3HCl(aq) \rightarrow AlCl_3(aq) + 3H_2O(l)$$

If you start with 50.3 g $Al(OH)_3$ and produce 39.5 g $AlCl_3$, what is the percent yield?

5. Given the following equation:

$$\underline{K_2CO_3} + \underline{HCl} \rightarrow \underline{H_2O} + \underline{CO_2} + \underline{KCl}$$

- a) Balance the equation.
- b) Determine the theoretical yield of KCl if you start with 34.5 g K_2CO_3 .
- c) If 3.4 $g H_2O$ are produced when you actually carry out this experiment, what is the percent yield?

6. Given the following equation:

$$H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + 2H_2O$$

- a) If 98.0 g H₂SO₄ is reacted with excess $Ba(OH)_2$, determine the theoretical yield of $BaSO_4$.
- b) If 213.7 $g BaSO_4$ are produced when you actually carry out this experiment, what is the percent yield?
- 7. Given the following equation:

$$3CaCl_2 + 2Li_3PO_4 \rightarrow 6LiCl + Ca_3(PO_4)_2$$

If you start with 82.4 g $CaCl_2$ and produce 52.3 g $Ca_3(PO_4)_2$, what is the percent yield?

8. Given the following equation:

$$Cr(OH)_3 + 3HI \rightarrow CrI_3 + 3H_2O$$

If you start with 50.3 g $Cr(OH)_3$ and produce 39.5 g CrI_3 , what is the percent yield?